- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Crowder, Anna (2)
-
Lu, Allison (2)
-
Traynor, Patrick (2)
-
Butler, Kevin (1)
-
Butler, Kevin RB (1)
-
Childs, Kevin (1)
-
Fedele, Caroline (1)
-
Gates, Carrie (1)
-
Layton, Seth (1)
-
Olszewski, Daniel (1)
-
Pasternak, Magdalena (1)
-
Stillman, Carson (1)
-
Tucker, Tyler (1)
-
Warren, Kevin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sharing high-quality research data specifically for reuse in future work helps the scientific community progress by enabling researchers to build upon existing work and explore new research questions without duplicating data collection efforts. Because current discussions about research artifacts in Computer Security focus on reproducibility and availability of source code, the reusability of data is unclear. We examine data sharing practices in Computer Security and Measurement to provide resources and recommendations for sharing reusable data. Our study covers five years (2019–2023) and seven conferences in Computer Security and Measurement, identifying 948 papers that create a dataset as one of their contributions. We analyze the 265 accessible datasets, evaluating their under-standability and level of reuse. Our findings reveal inconsistent practices in data sharing structure and documentation, causing some datasets to not be shared effectively. Additionally, reuse of datasets is low, especially in fields where the nature of the data does not lend itself to reuse. Based on our findings, we offer data-driven recommendations and resources for improving data sharing practices in our community. Furthermore, we encourage authors to be intentional about their data sharing goals and align their sharing strategies with those goals.more » « lessFree, publicly-accessible full text available May 12, 2026
-
Warren, Kevin; Tucker, Tyler; Crowder, Anna; Olszewski, Daniel; Lu, Allison; Fedele, Caroline; Pasternak, Magdalena; Layton, Seth; Butler, Kevin; Gates, Carrie; et al (, ACM)Audio deepfakes represent a rising threat to trust in our daily communications. In response to this, the research community has developed a wide array of detection techniques aimed at preventing such attacks from deceiving users. Unfortunately, the creation of these defenses has generally overlooked the most important element of the system - the user themselves. As such, it is not clear whether current mechanisms augment, hinder, or simply contradict human classification of deepfakes. In this paper, we perform the first large-scale user study on deepfake detection. We recruit over 1,200 users and present them with samples from the three most widely-cited deepfake datasets. We then quantitatively compare performance and qualitatively conduct thematic analysis to motivate and understand the reasoning behind user decisions and differences from machine classifications. Our results show that users correctly classify human audio at significantly higher rates than machine learning models, and rely on linguistic features and intuition when performing classification. However, users are also regularly misled by pre-conceptions about the capabilities of generated audio (e.g., that accents and background sounds are indicative of humans). Finally, machine learning models suffer from significantly higher false positive rates, and experience false negatives that humans correctly classify when issues of quality or robotic characteristics are reported. By analyzing user behavior across multiple deepfake datasets, our study demonstrates the need to more tightly compare user and machine learning performance, and to target the latter towards areas where humans are less likely to successfully identify threats.more » « lessFree, publicly-accessible full text available December 2, 2025
An official website of the United States government
